

Fluorination of carbon nanotubes

C. Ewels¹, G. Van Lier², A. Felton³, J. –J. Pireaux³, J. –C. Charlier^{2,4}

chris@ewels.info

www.ewels.info

¹LPS, CNRS UMR8502, Université Paris Sud, 91420 Orsay, Paris, France ² PCPM, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium ³ LISE, Facultés Universitaires Notre Dame de la Paix (FUNDP), Namur, Belgium ⁴ CERMIN, UCL, Louvain-la-Neuve, Belgium

Fluorination of carbon nanotubes is the gateway to chemical functionalisation, providing an ideal "test system" for investigating site activity and addition patterns. Fluorination enables nanoparticle solubility in a variety of polar solvents, easy separation and purification, and alters mechanical and electrochemical response. Nanotube fluorination pyrolytically "cuts" nanotubes, generating short tube segments, and fluorine can be substituted with more complex addends, opening the way to complex chemical functionalisation of fullerenes and nanotubes.

We present results of ab initio studies of fluorination of carbon nanotubes. Our intention is to understand the different types of bonding observed in nanotube fluorination, and compare with CF₄ plasma treatment of CVD nanotube samples.

Preliminary test cluster calculations show:

Weak binding H_2O to armchair $F_2(1,2) = 0.2eV$ ⇒ Tubes water soluble

Lowers migration barrier $(1,2) \rightarrow (1,3)$ by 0.4eV \Rightarrow H₂O catalyses F rearrangement on nanotubes Consistent with C₆₀F₃₆, which rearranges at RT.

After plasma, XPS reveals C, O and F at the nanotube surface.

Plasma conditions give significantly different surface F/C ratios.

Short plasma treatment reveals range of CF_n type peaks, longer

Oxygen impurity concentrations remain consistently low.

treatment gives more 'stable' fluorinated tube signal.