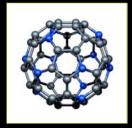
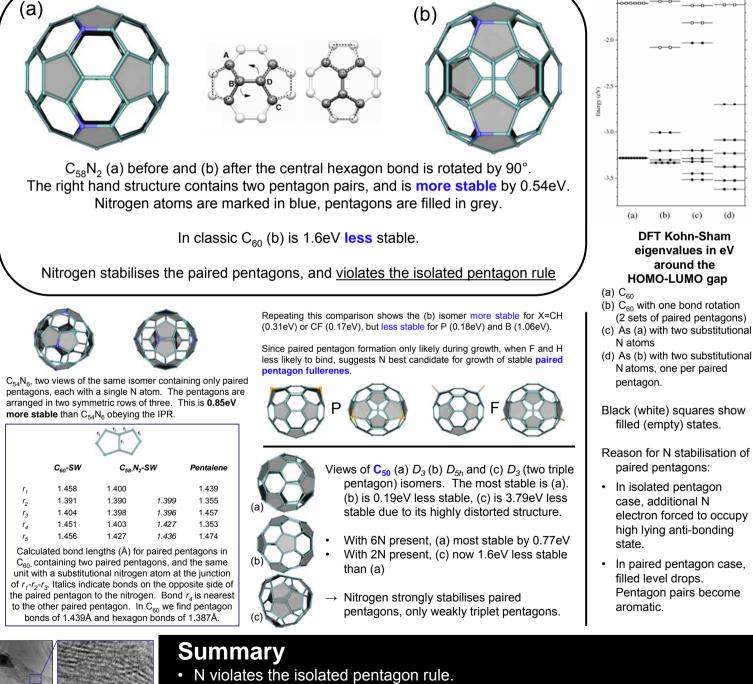
Does N violate the isolated pentagon rule?


C. Ewels¹, T. Minea², S. Point², O. Stéphan¹, P. R. Briddon³, C. Colliex¹ chris@ewels.info

¹LPS Université Paris Sud, 91420 Orsay, Paris, France ² IMN Nantes, CNRS UMR6502, 44322 Nantes, France

³ Department of Physics, University of Newcastle, UK



• 'Classic' model of C₄₈N₁₂ has one N per pentagon Claimed to form in *fullerene-like* thin films grown

- by magnetron sputtering, at centre of N-rich carbon onions.
- Many C/N species seen in mass spectrometry of arc-electric graphite with pyrrole / N₂ / NH₃.
- Is this model right?

Isolated Pentagon Rule (IPR) Pentagons repel each other!

- Obeyed in fullerenes, nanotubes, nanohorns, etc.
- Why C₆₀ is most stable fullerene smallest closed cage with pentagons separated.
- Pentagon bonds 'single' character; neighbouring pentagons have under-coordinated shared carbon atoms.

- Stabilises azapentalene paired pentagon units
- New family of smaller (or larger) azafullerenes possible with different chemistry
- Implications for N doped carbon nanostructures
- Paired pentagons allow sharp angles (cf. 90° nanotube tip closure in BN)

Sharp 90° angles often seen in PECVD N-doped nanotubes - paired pentagons?

- - (nanotubes, thin films, fullerene-like thin films)