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The anharmonicities of the C-H stretch modes in HCN and the passivated C acceptor in GaAs
are investigated using ab initio local-density-functional cluster theory. The effective-mass parameter
x for the C-H stretch mode is shown to be less than unity in HCN, and greater than unity for the

GaAs case. The calculated anharmonic parameter for the first defect is found to be 106 cm™

! and

is in very good agreement with experiment. For the second defect, the anharmonicity is about 50%
larger in agreement with empirical estimates. The frequencies of the fundamental transitions in both
systems are shown to be very sensitive to the C-H length. This limits the accuracy of theoretical
investigations of these high frequency H modes. Finally, the effects of electrical anharmonicity are
considered and it is shown that they reduce the intensity of the overtone in the C-H complex in

GaAs by about 70%.

I. INTRODUCTION

Anharmonicity has several important consequences for
atomic vibrations in solids. Besides the usual implica-
tions such as thermal expansion and lattice thermal re-
sistance, it contributes to the decay of local vibrational
modes (LVM’s) of defects and leads to a breadth in their
infrared absorption lines. It also breaks the selection rule
preventing an electrical dipole transition between states
of the same parity, and this allows overtones of funda-
mental lattice transitions to be observed. The effects
of anharmonicity are notoriously difficult to calculate as
they involve high-order derivatives in the potential en-
ergy. In principle these could be derived as the energy
for the ground state, E, can be computed, within the
Born-Oppenheimer approximation, for any arrangement
of nuclei. It is straightforward to determine the minima
of F, and hence the structure of the solid and its defects,
as well as the second derivatives of E (Refs. 1-3) which
can then be used to evaluate the lattice frequencies and
LVM’s. The third- or higher-order derivatives of E could
be found in the same way, but it is not clear that expan-
sions to third or even fourth order are really sufficient to
describe anharmonic effects although it is almost univer-
sal practice to do so. This is an important consideration
which we shall dwell upon later.

The anharmonic effects on the LVM’s due to light im-
purities, and especially H, in semiconductors are particu-
larly large. This is because the amplitude of the vibration
of the H atom, ~ 0.2 A, implies that H explores a region
that is outside the harmonic regime. Several features
due to anharmonicity in the LVM’s of H defects have
been observed* ® and this has given an impetus to inves-
tigate anharmonic effects from a theoretical viewpoint.
Previous investigations of mechanical anharmonic effects
have usually been carried out assuming either a potential
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involving cubic and quartic terms in the displacement of
H from its equilibrium position,* or a Morse potential.”-¢
There is, in addition, another form of anharmonicity that
has been often neglected:® that of electrical anharmonic-
ity. This is where the dipole moment varies nonlinearly
in the normal coordinate. This by itself would induce a
transition between the ground and second excited state
of a harmonic oscillator. In practice both forms of an-
harmonicity are always present and there is a need to
quantify each type.

The aims of this paper are to explore the anharmonici-
ties of the C-H stretch mode when C is bonded to N, as in
the prussic acid molecule HCN, and when C is a substi-
tutional defect in GaAs. In the latter case the structure
of the defect is believed to be that illustrated in Fig. 1.
There have been classical observations of the overtone
to the C-H stretch mode in HCN” whereas in the sec-
ond example the anomalous isotopic shifts observed in-
the LVM’s have been explained in terms of anharmonic
effects®.

It is usual to write the frequency v of the H stretch
mode of H-C-X as:®

v? = k(1/My + 1/xMc). (1)

Here k is the force constant of the oscillator and x is an
effective-mass parameter which depends on the coupling
of C with X and is only weakly dependent on My. For
a diatomic species, HC, the term x is unity. When X is
some atom, or the remaining crystal lattice, bonded to C,
it is often argued that x is greater than unity as the mo-
tion of C is constrained by the lattice and this increases
the effective mass of C. However, this argument is not
always correct. Indeed, it might equally be argued that
if C is strongly bonded to X, then the slight motion of C
involved in the H stretch mode costs extra energy as the
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FIG. 1. The Cxs-H defect in GaAs.

C-X bond is compressed. Thus the H stretch frequency
would increase over the value determined by the constant
k and the reduced mass alone, and this requires x to be
less than unity. We shall show below that this occurs
in the prussic acid molecule where the C-N bond is very
strong. For the C-H stretch mode in GaAs, Davidson
et al.® fitted Eq. (1) to the frequencies of four isotopic
combinations (H, D, 2C, 13C) that they had observed,
and found x to be less than unity. In this case there is no
strong bond that is compressed when C moves — only
a bend in the three C-Ga bonds. A value of x less than
unity is then unphysical. The suggestion was then made
that if anharmonic effects are included then the the har-
monic frequencies in Eq. (1) are related to the observed
fundamental transition frequencies w through an anhar-
monic parameter B given by
w=v— B/M. (2)
Using the observed values of the C-H stretch frequency
for two isotopes of C and H (Table I), and taking M to
be the mass of the H atom, B and x were found to be
176 amucm™! and 1.1, respectively.® The implication is
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then that anharmonic effects are particularly large and
the anomalous isotope shifts are to be understood as aris-
ing from these. However, no overtone to the fundamental
transition was reported. Now, an overtone has been ob-
served for the C-H vibration of the HCN molecule which
has an anharmonicity parameter of 102 amucm 1.7 This
is much smaller than B for the stretch mode in GaAs.
The anharmonicity parameter quoted above for HCN is
related to the difference between the overtone and twice
the fundamental frequency but is equal to B in low-
order perturbation theory, i.e., when the quartic terms
are treated in first order and the cubic terms in second
order. These experimental results raise the question as
to why the anharmonicity is so large for C-H in GaAs
and yet the intensity of the overtone seems to be so low.
One of the motivations of this paper is to investigate
these anharmonic effects and the relative strengths of the
overtone and fundamental transitions.

In Sec. I we describe previous investigations of the
C-H defect in GaAs. We have recently reconsidered the
calculation of the LVM’s of this defect using an improved
numerical method over our previous investigations and
this has given a better agreement with the observed low-
lying LVM’s. The modified procedure, however, wors-
ened the agreement for the C-H stretch mode and this is
a consequence of anharmonicity. In Sec. III we describe
the changes to the theory and elaborate on the methods
used here to investigate anharmonicity. This theory is
then applied to HCN in Sec. IV and to the C-H defect
in GaAs in Sec. V. In Sec. VI the effects of electrical
anharmonicity are considered. Finally, our conclusions
are given in Sec. VII.

II. PREVIOUS STUDIES
OF THE C-H COMPLEX IN GAAS

Carbon is known to substitute for As in GaAs and thus
behave as a shallow acceptor. Clerjaud et al.1° found a C-
H stretch frequency at 2635 cm™! in liquid encapsulated

TABLE 1. Calculated and observed LVM’s, cm™!, due to C-H in GaAs and AlAs.

Obs. GaAs (Refs. 27, 25)

Theory, GaAs

Obs. AlAs (Refs. 24, 27) Theory, AlAs

Zc.H 2635 2950 2558 2885
3C.H 2628 2942 2549 2877
2¢c.p 1969 2154 1902 2111
Bc.D 1958 2144 1894 2100
A; modes

12C.H 453 456 487 466
3C-H 438 440 477 453
2c.D 440 442 480 454
13c.D 427 428 471 442
E~ H-like modes

2C.-H 739 888 671 740
1B3oH 730 883 653 725
2c.p 637 707 657 684
13c.D 617 693 635 662
ET C-like modes

12Cc.H 563 553 ND 559
13C-H 548 536 ND 551
2c.Dp 466 495 ND 437
3¢c.D 464 487 ND 436
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Czochralski grown GaAs contaminated by C and H. This
was assigned to the C-H stretch mode through the obser-
vation of a shift of ~ 7 cm™? from !3C-H. The magnitude
of this shift is consistent with H being bonded to a mass
approximately 12 amu. Confirmation for the presence of
H in the defect was given by the observation of the C-
D line at 1969 cm~1.1! The approximate v/2 reduction
in frequency is indicative of a H stretch mode. Uniax-
ial stress measurements'? established that the defect has
trigonal symmetry and hence the H atom is located either
close to a bond-centered or antibonding site to C along
<111>. Our previous ab initio cluster calculations!34
concluded that H was located near a bond-centered site
(Fig. 1) with a very short C-H length of 1.12 A. The
reorientation energy for H around the four <111> axes
was calculated to be 0.67 eV—close to the observed value
of 0.5 eV.!? This theory gave the C-H stretch mode to
be 2605 cm~! and in good agreement with the observed
value. The E~ mode, which involves a movement of H
perpendicular to the Cj3, axis, and out of phase with C,
was placed around 715 cm™!. The C-4; and E* modes,
which involve motion of H in phase with C in respective
directions parallel and perpendicular to the C-H bond,
were calculated to lie at 413 and 380 cm ™!, respectively.

Infrared spectroscopy on GaAs containing high con-
centrations of C and H grown by molecular beam epitax-
ial and chemical vapor deposition methods found further
modes at 453 (X) and 563 cm™! (Y).!® Both were sub-
sequently shown to be due to the C-H defect as they
exhibited shifts with C and H isotopes. A Raman scat-
tering experiment!®17 assigned the 453 cm ™! to the C-A4;
mode. Y is now believed to be the ET mode.® The E~
mode was not observed in these early experiments. How-
ever, in deuterated samples, the E~ mode was detected
at 637 cm~!. This must imply that the unobserved H-
E~ mode lies above 637 cm~! and a simple force con-
stant model® predicted it to lie at 745.2 cm™!. The fail-
ure of the infrared experiments to locate the H-F~ mode
was explained by the ab initio theory as the consequence
of a small transition dipole moment. Very recently this
mode has been detected at 739 cm~! by Raman scatter-
ing experiments.2®

The E* assignments were made more difficult not only
because of the initial failure to observe the H-E~ mode,
but also because the interaction between them invalidates
Eq. (1). The modes attempt to cross each other when D
replaces H. Thus although the displacement of H domi-
nates the £~ mode, the displacement of C becomes in-
creasingly important for the deuterated case. The oppo-
site is true for the E* mode.®

The C-H defect is the only H-passivated shallow im-
purity for which all the LVM’s have been detected. This
wealth of experimental data and the discrepancies with
the theoretical calculations prompted us to reconsider the
problem using a much larger basis set to describe the
wave functions.?® Details of these changes are given be-
low. The new basis set gives the C-H and H-Ga bond
lengths to be 1.126 and 2.253 A, respectively, and the
calculated modes are given in Table I. A discussion of
these modes is given in Ref. 25. The low-lying modes are
now in much better agreement with experiment, but the
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C-H stretch mode and E~ are placed much higher than
before. This, we shall show below, is due to the effect of
anharmonicity.

A recent plane wave supercell calculation'® has also
found the bond-centered defect to be the most stable.
The C-H and C-Ga lengths were found to be 1.2 and
2.0 A, respectively, and the C-H stretch and E~ fre-
quencies lie at 2781 and 724 cm™!. There is no direct
experimental evidence for the location of H, but the pre-
vailing viewpoint is that acceptors are passivated with H
in this configuration and donors are passivated with H at
an anti-bonding site to either the impurity, as in Siga,2°
or to one of its neighbors, e.g., P in 5i.1%2% In some cases,
channeling experiments show directly the location of H,
e.g., the B acceptor in Si.21+22 Indirect evidence for the
bond-centered location is that the magnitude of the lat-
tice contraction caused when the C-H complex dissoci-
ates, and H is expelled from the lattice, agrees quantita-
tively with the structure predicted by the bond-centered
geometry.?3

III. METHOD
A. Ab initio theory

The calculations used here are ab initio local-density-
functional pseudopotential ones carried out on large H-
terminated clusters.? The electronic wave functions are
expanded in s and p Gaussian orbitals centered at nuclei
as well as at bond centers.

In the case of the C-H complex in GaAs, eight Gaus-
sian functions of different exponents were used on C and
the surrounding four Ga atoms and two on H. The wave
function basis on all the other atoms consisted of linear
combinations of these Gaussian functions. The charge
density was fitted to eight Gaussian functions on C, Ga,
and As and three on each H atom. In addition, bond-
centered Gaussian orbitals and fitting functions for the
charge density were placed at every bond except those
with H. This is a substantially larger basis than we used
in our first calculation.!® In that work four Gaussian or-
bitals and five fitting functions were placed on C, Ga,
and As sites. In order to be certain that this basis set is
sufficiently large, we carried out further runs with four
Gaussian orbitals and fitting functions on the central H
atom. The C-H bond length was unchanged and the C-H
stretch frequency changed insignificantly from the results
given in Table I. The same sized basis has also been used
for C defects, including the C-H complex, in AlAs.2%26
Table I shows the calculated and experimental modes.?”
In both GaAs and AlAs the C-H stretch modes are too
high in frequency but the other modes are in good agree-
ment.

For the HCN molecule, eight Gaussian s and p orbitals
were placed at the N site to describe the wave functions
and eight fitting functions were used for the charge den-
sity basis. Six functions were used for C, and the H
basis was the same as the C-H complex in GaAs. Bond-
centered functions were placed in every bond.

Norm-conserving pseudopotentials of Ref. 28 were used
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and removed the need to include core electrons. The
self-consistent energy E and the force on each atom were
calculated and the atoms moved by a conjugate gradient
algorithm until equilibrium was attained. The second
derivatives of E between selected atoms were evaluated
in the way described previously,? i.e., each atom was dis-
placed by 0.09 a.u. from equilibrium and the force on all
the selected atoms evaluated. Then the atom was dis-
placed by —0.09 a.u. and the forces reevaluated. The
second derivatives on the displaced atom and the others
could then be found from the two-sided difference for-
mula for the second derivative. It is important to realize
that this prescription does not lead to harmonic force
constants as there are quartic and higher-order correc-
tion terms in these estimates of the second derivatives.
We refer to the frequencies arising from these force con-
stants as quasiharmonic. If all the second derivatives E;;
are evaluated then the dynamical matrix can be found
directly as

E;;// M;M;.

Here M; is the mass of the 7th atom. All the entries
to the dynamical matrix for HCN were found from the
ab initio program. For the C-H defect in GaAs, only
the derivatives between C, H, and the four Ga neigh-
bors were evaluated. The contributions to the dynamical
matrix from all the other derivatives are taken from a
Musgrave-Pople potential found earlier.2? This potential
was found from a fit to the double derivatives evaluated
from a cluster representing bulk material and gave the
TO mode at I" to within 20 cm™! of the experimental
mode.

If the H stretch mode is decoupled from all other
modes, it is only necessary to consider those energy
derivatives between C and H along the bond direction.
Suppose these derivatives are E;; where i = C or H.
Then the quasiharmonic C-H frequencies v are the eigen-
values of the dynamical matrix and are given by

2 Enu E¢u 3)
My Mgu(Ec,c — Mcv?)
Using
v? = Eyu(1/Myg + 1/xMc) (4)

allows us to write x as

2
Eypn Ecc My , My

= . 1-— — — 4+ . 5

X (ECH> ( Eynu Mc XMC) (5)

)

We shall use Eq. (5) below to determine x for HCN and
the C-H defect in GaAs.

We note x is only weakly dependent on My if the sec-
ond and third terms in the sum are small. This is only
true when

EC,C/EH,H <L Mc/MH.

If this were not true and Ec ¢ is large, such as occurs

when the C-X bond is strong, then x can be less than
unity as we shall see below. If the C atom was decou-
pled from the rest of the lattice then the translational
symmetry of the resulting diatomic CH molecule would
require

Eyn = Ecc=—EcH. (6)
These inserted into Eq. (5) yield x =1 and
Vv: = Euu(l/Mu +1/Mc)

as expected.

B. The anharmonic oscillator

So far, we have treated the anharmonic terms in an
approximate way by using a finite difference method to
evaluate E; ;. We now treat them more systematically.
When the H atom moves in an anharmonic manner, the
coupling between motion along and perpendicular to the
C-H axis should be considered. This, however, turns the
problem into a three-dimensional one which is difficult
to solve. However, since the C-H stretch mode occurs
at a much higher frequency than the bend mode in ei-
ther HCN or CH in GaAs, it is reasonable to neglect the
coupling between the two types of motion. The problem
then reduces to motion along the C-H bond.

We evaluated the energy E for displacements z away
from the equilibrium values. E was then fitted to the
polynomial expression:

E=Eo+ ) ax'. (7)
~

In order for the oscillator wave functions to decay to
zero at infinity, we require m to be even and a,, > 0.
We used values of m up to 8. A standard least squares
fit to the data with Chebyshev polynomials was used to
extract the power series in Eq. (7).

One problem in the determination of the anharmonic
frequencies is the choice of the oscillator mass M. If X
was absent, then M must be the reduced mass of C-H.
However, in the presence of X it is not clear whether M
should include x. In practice the effect of x is rather
small and leads to shifts of about 30 cm™! in the funda-
mental frequency. In the following, we have included x
in the expression for the oscillator mass:

M = MHMCX/(XMC + MH) (8)

This means that our calculated values of B in Eq. (2)
cannot be directly compared with the estimate given in
Ref. 5 because these authors chose M in (2) to be My.

The harmonic frequency vq is given by the quadratic
term

U2 = 2(12/M.

The values of v are greater than the quasiharmonic fre-
quencies calculated from the dynamical matrix as de-
scribed above. This is because of the inclusion of quartic
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and other anharmonic terms in FE;;.

The energy levels of the anharmonic oscillator, w,,
were then found using two methods. In the first, we
expanded the oscillator wave function in eigenfunctions,
15, of the harmonic oscillator whose frequency is v,

N

\I’n = ch,]"lf)j.

=0

The coefficients ¢, ; are found from the secular matrix in
the usual way.

This approach is not based on perturbation theory as
the number of terms in this expansion can be increased
until the energy level converges. In practice for m up to
8, N must be greater than 10 and we used 50 to be cer-
tain that accurate estimates of the energy levels had been
found. A problem with this method is that the polyno-
mial may have other minima far away from the region of
z used to evaluate E. These minima are of course quite
unphysical but for large enough N, the oscillator wave
function will leak into these unphysical regions and the
calculated frequencies will then be incorrect. It is easy
to ascertain whether this had occurred by plotting out
the wave function. The second approach directly inte-
grates the Schrédinger equation and the eigenvalues are
found by the shooting method with the boundary con-
ditions that the oscillator wave function vanishes at the
end points of the ranges of z used to calculate E. For all
the results given here, these two methods gave frequen-
cies within 1 cm ™! of each other. These procedures gave
the three lowest eigenvalues of the anharmonic oscilla-
tor and hence the fundamental and overtone transition
frequencies could easily be found.

There are several ways in which anharmonicity can be
quantified. Besides the parameter B defined in Eq. (2),
there is the anharmonicity parameter Bo/M which is re-
lated to the the difference between the overtone and fun-
damental frequencies by

BO/M = 2(0.11 — uJo) — (w2 — u)()). (9)

Here w,, are the energy levels of the oscillator. By van-
ishes when the potential is harmonic. If the potential was
limited to cubic and quartic terms in x, then to lowest-
order perturbation theory, B in Eq. (2) and By are then
given by

B = By = (15a2 — 12aza4)/8a3. (10)

However, B and B, are not equal in higher order. Ac-
cordingly, it is of interest to determine B directly from
Eq. (2) and investigate its dependence on mass. The
difference between B and By is a measure of the im-
portance of terms beyond those considered in low-order
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perturbation theory. Anharmonicity also causes changes
in the fundamental frequency with bond length. From
a theoretical viewpoint, this is a most important mea-
sure as it limits the accuracy with which the fundamen-
tal frequency can be calculated. We shall see below that
the major error in the calculations arises from estimates
of the equilibrium bond length, and small errors in this
quantity lead to much greater differences in the frequen-
cies than the effect of x on M.

IV. ANHARMONICITY OF HCN

The ab initio method gives equilibrium C-H and C-N
bond lengths in the HCN molecule of 1.07 and 1.15 A,
which are to be compared with experimental values of
1.06 and 1.15 A.7 The quasiharmonic frequencies calcu-
lated from the dynamical matrix are shown together with
the experimental results in Table II. The calculated fre-
quencies are in good agreement with the observed ones
even though anharmonicity has been taken into account
in a crude way. It is interesting that this molecule has a
C-H bend mode close to the £~ mode in the C-H defect
in GaAs.

The values of the energy second derivatives are given
in Table III. We note that Ec ¢ is particularly large,
reflecting the strength of the C-N bond. We now sup-
pose the coupling between the N atom and the other two
atoms can be neglected so that the dynamical matrix re-
duces to a 2x2 one. Then inserting the values of E;;
from Table III into Eq. (5) and iterating, we find x to
be 0.77 for H and 0.59 for D. These values are less than
unity and as stated above this arises because Ec ¢ (Ta-
ble III) is particularly large for HCN. These values of x
when inserted into Eq. (4) yield H and D frequencies of
3305 and 2512 cm ™!, respectively. The closeness of the
H mode with the one calculated from the full dynam-
ical matrix shows that the neglect of the movement of
N is valid. However, the large discrepancy for the C-D
mode reveals that in this case the effect of the vibration
of C-N cannot be neglected. The C-N mode at 1944.5
cm ™! interacts strongly with the C-H mode when H is
changed to D. The effect of the interaction is similar to
that found between the two E modes in the CH defect
in GaAs discussed above.

The anharmonic potential for H is calculated by dis-
placing the H atom from a rigid C-N unit, although al-
most identical results arise if the N atom is relaxed during
the stretching of the C-H bond. For each H displacement,
the self-consistent energy E was recalculated and its vari-
ation with z is shown in Fig. 2. Tt illustrates the classical

TABLE II. Calculated and observed frequencies, cm ™", of modes of H-C-N.

H_12 C D'12C
Calculated Observed Calculated Observed
3318.9 3312 2611.5 2629
2125.0 2089 1944.5 1906
764.3 712 609.1 569
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TABLE III. Calculated double derivatives for H-C-X in a.u.

System Ec,c Ecu Ennu

HCN 1.565 -0.374 0.376

HC-(GaAs) 0.342 —0.277 0.311

character of a negative third-order derivative. The po-
tential was evaluated for H displacements from the equi-
librium value from —1.0 a.u. to 1.0 a.u. These values
were used to fit £ to a polynomial as described above.
For m = 8, the error in the fitted potential is 7.1x10~°
a.u. (16 cm™!). Table IV gives the resulting coefficients
a; in Eq. (7). The term a; leads directly to the harmonic
frequency v, which is 3552.5 cm™! for x = 0.77. This
is much greater than the quasiharmonic one in Table II
which is to be understood as the latter include some an-
harmonic contributions arising from quartic terms in the
potential.

The Schrodinger equation for the oscillator is now
solved as described above using this potential and with
mass M given in Eq. (8), with x = 0.77. Figure 2 shows
the lowest three energy levels and wave functions of the
oscillator. We note that all three wave functions have
become negligible at the boundaries of the region used
to calculate E. If this had not happened, then the poly-
nomial fit to £ would have been unreliable in a region
where the wave function was not negligible. We also note
that the wave functions have larger peaks for positive
than for negative z. This reflects the lower potential ex-
perienced when the C-H bond is stretched over its values
when it is compressed. This is important when the in-
tensity of the overtone is considered.

The fundamental and overtone frequencies are given in
Table V and are about 4% lower than the observed values.
The anharmonicity parameter By/M is 106.3 cm™! and
is very close to the observed one at 102.3 cm~!. Choos-
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FIG. 2. (a) Potential energy (a.u.) versus displacement
from equilibrium, z (a.u.), for C-H stretch in HCN. The oscil-
lator wave functions for the ground (b), first (c), and second
(d) excited states are also shown. The horizontal lines show
the energies of these states.

ing x to be unity has little effect on By/M (104.0 cm™?),
although the fundamental frequency is then reduced by
34 cm™!. The quasi-harmonic frequencies in Table II lie
between the harmonic and anharmonic ones. The prin-
cipal error in the location of the fundamental frequency
comes from its sensitivity to the equilibrium length of the
C-H bond. We suppose that the errors in the calculation
lead to an additional term in the potential energy that
is linear in = and has the effect of decreasing slightly the
equilibrium length of the C-H bond from its calculated
length of 1.07 A towards the experimental value of 1.06
A. Because the potential is so anharmonic, the frequency
rapidly increases with decreasing bond length. Figure 3
shows the variation of the fundamental and overtone fre-
quencies versus the change in bond length. The change
in bond length needed to bring both results into agree-
ment with the experimental ones is very small: about
—0.011 A. This shift would also bring the calculated and
observed bond lengths into almost complete agreement.
By/M, however, is then 105 cm™! and almost unchanged
from its previous value. Thus the anharmonicity param-
eter depends weakly on the C-H bond length. This im-
plies that ab initio theory is able to calculate this quite
accurately although the absolute frequencies are much
less accurate. The simple theory given here excludes a
discussion of the overtone and the parameter B in the

deuterated case because of the strong interaction between
the C-D and C-N modes.
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FIG. 3. The variation of the fundamental (a) and overtone
(b) frequencies in cm™! with the change in the equilibrium
C-H length (A) in HCN. Curve (c) shows the the fundamental
frequency x2 and its difference from (b) demonstrates that
the anharmonicity varies slowly with the C-H length. The
horizontal lines show the experimental frequencies [3312 and
6521.7 cm™! (Ref. 7)].



8384 R. JONES, J. GOSS, C. EWELS, AND S. OBERG 350
TABLE IV. Calculated coefficients for E in a.u.

System a2 as as as ae ar as

HCN 0.1846 —0.1932 0.1473 —0.0780 0.0234 —0.0265 0.0210

HC-(GaAs) 0.1703 —-0.1771 0.1025 —0.0503 0.0378 —0.0225 0.0047

It is of interest to investigate whether low-order per-
turbation theory can account for anharmonicity in HCN.
This can only be done if a quartic potential describes
the anharmonic oscillator. However, if the coefficients
a;,t > 4 in Eq. (7) are set to zero, then the fundamen-
tal and overtone frequencies become 3229.7 and 6448.2
cm™! (x = 0.77) and the anharmonicity Byp/M is then
only 11.2 cm~!. Thus this potential is inadequate to ac-
count for the large anharmonic effects. An alternative
method is to try to fit the potential to a quartic polyno-
mial, i.e., m in Eq. (7) is 4. Of course the error in the fit
is now much worse, ~ 7.8x1073 a.u., and this potential
gave fundamental and overtone frequencies at 1947.2 and
4006.6 cm~!. These results show that low-order pertur-
bation theory cannot be used to describe the overtone in
HCN.

To conclude, x is less than unity in the case of the H
stretch mode in HCN due to the very strong C-N bond.
This also causes a strong interaction between the C-D
and C-N modes. The absolute values of the fundamental
and overtone modes are very sensitive to the calculated
C-H length, although the calculated anharmonicity is less
sensitive and its value is very close to that observed.
Low-order perturbation theory does not quantitatively
describe the overtone.

V. THE C,,-H STRETCH MODE IN GAAS

All 87 atoms in the cluster CGagyAsyHys with C at
a central As site and H near a bond-centered site were
allowed to relax. The C-H and H-Ga lengths were found
to be 1.126 and 2.253 A. The energy double derivatives
were then derived by displacing the six inner atoms by
+0.09 a.u. and calculating the forces on them. Then the
full dynamical matrix was constructed using a Musgrave-
Pople potential?® for the remaining entries. Table I shows
the calculated quasiharmonic and observed modes.?” The
C-H stretch frequency is 11% too high but the calculated
local modes of C are in good agreement with the observed
ones.

The value of x deduced from Eq. (1) using either the
observed H and D stretch frequencies for 12C, or the H
and D stretch frequencies for 3C, yield x to be about
0.63. We must now decide whether a value of x less than
unity reflects a very strong C-X bond as in HCN or an
effect due to anharmonicity as suggested in Ref. 5. If the

calculated stretch frequencies for H and D for either C
isotope in Table I are used to determine x, then a value
of about 1.17 is found. Alternatively, if we neglect the
coupling between C and the lattice, then x can be calcu-
lated directly from Eq. (5) and this gives it to be about
1.23. These results make it certain that, in contrast to
HCN, x is larger than unity for the C-H stretch mode in
GaAs. This shows that the anomalous isotope shifts are
to be explained through anharmonic effects in agreement
with the conclusions of Ref. 5.

We investigated the anharmonicity in the C-H stretch
mode in a similar way to that described above for HCN.
The energy E was evaluated by displacing H in steps 0.05
a.u. from —1.0 to 1.0 a.u. E was then fitted to a power
series up to terms of order 8 and the coefficients found
are given in Table IV. The error in the potential fit is
2.8x1075 a.u. (6 cm™!). Figure 4 shows this potential as
well as the wave functions and energy levels of the three
lowest states. The curves are rather similar to the HCN
case discussed above.

Table VI gives the harmonic, fundamental, and over-
tone frequencies evaluated from the potential using x =
1.23. The fundamental H stretch frequency lies at 2963.2
cm™! and, in contrast with HCN, is close to that found
from the dynamical matrix. The harmonic frequencies
are greater, as expected, than the quasiharmonic ones of
Table I. The anharmonicity parameter By/M is 144.0
cm™! for H and is larger than that found in HCN by
almost 36%. If x is taken to be unity, then the funda-
mental and overtone frequencies drop by 20 and 41 cm™?,
respectively, leaving By virtually unchanged.

Such large anharmonicities must imply a great sensitiv-
ity of the calculated frequency with the C-H bond length
and can account for the overestimate in the C-H stretch
frequency. The C-H force constant is the second deriva-
tive of the potential and the contribution of the cubic
term in Eq. (7) shows that this decreases with increasing
z by a factor

(1 + 3asz/az).

Inserting the values of the coefficients from Table IV, we
find this factor is 0.82 when z is only 0.056 a.u. (0.03
A). This would lead to a drop in the frequency by about
9%. A more rigorous approach is to solve the Schrodinger
equation for the oscillator when an additional term lin-
ear in z has been added to the potential. Figure 5 shows
the variation in the fundamental and overtone transition

TABLE V. Calculated and observed anharmonic C-H frequencies, cm™', of HCN.

Mode x = 0.77 =1.0 Observed
Fundamental 3189 3155 3312
Overtone 6273 6206 6521.7
Anharmonicity, Bo/M 106.3 104.0 102.3
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TABLE VI. Calculated and observed anharmonic C-H frequencies, cm™?!, of C in GaAs.

Mode Obs. (Refs. 5, 10, 11) Harmonic wy — wo w2 — wo Mass (amu) B Bo
C-H=1126 4

2c.H 2635 3108.1 2963.2 5782.3 0.937 135.7 134.9
13C.H 2628 3100.5 2956.3 5769.2 0.941 135.7 134.9
2c.D 1969 2266.4 2189.3 4301.2 1.761 135.8 136.3
13c.D 1958 2256.0 2179.6 4282.5 1.778 135.8 136.3
C-H=1.1614A

12C.H 2635 3012.8 2635.2 5114.3 0.937 159.1 146.2
3C-H 2628 3005.5 2629.1 5102.7 0.941 159.1 146.5
2c.p 1969 2196.9 1954.5 3819.0 1.761 160.3 158.4
3c.D 1958 2186.8 1945.9 3802.7 1.778 160.3 158.4

frequencies with the change in the length of the C-H
bond in this case. It is seen that the experimental funda-
mental frequency is reproduced when the C-H length is
only 0.035 A longer than that calculated by the ab initio
method. However, the anharmonicity parameter is again
rather insensitive to the bond length. By/M is now found
to be 156 cm~!—about 47% larger than for HCN.

It is of interest to determine the dependence of the an-
harmonicity parameters Bg and B in Eq. (2) on the os-
cillator mass M. Figure 6 shows this behavior for the ab
initio C-H bond length of 1.126 A as well as the extended
length of 1.161 A necessary to obtain agreement with the
observed fundamental. The values of B and By rapidly
approach their asymptotic values given by low-order per-
turbation theory for M greater than 1 in the first case
and about 1.8 in the second. The importance of higher-
order terms in perturbation theory is much greater for
By than for B because the wave function of the oscilla-
tor in the second excited state samples a much greater
range of the potential. These results suggest that low-
order perturbation theory provides a reliable guide for
calculating the effects of anharmonicity. This, however,
is quite wrong.
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FIG. 4. (a) Potential energy (a.u.) versus displacement
from equilibrium, = (a.u.), for C-H stretch in GaAs. The
oscillator wave functions for the ground (b), first (c), and sec-
ond (d) excited states are also shown. The horizontal lines
show the energies of these states.

If the coefficients a; in Eq. (7) are set to zero for ¢ > 4,
then the fundamental and overtone H frequencies become
2988 and 5897 cm~! for x and C-H to be 1.23 and 1.126
A. Hence the anharmonicity parameter By /M drops to 79
cm™!. B still approaches its asymptotic value of Eq. (10)
given by low-order perturbation theory for large M but
the rapid approach to the asymptotic value is only valid
for certain ranges of the coefficients a;,% > 4 and outside
these ranges, masses very much bigger than unity are
needed for B to be given by its asymptotic value. This
means that low-order perturbation theory is inapplicable.
If the potential was fitted with a quartic polynomial, then
of course the error in the fit is much larger and the fre-
quencies of the fundamental and overtone then become
2897 and 4269 cm~!. This leads to an anharmonicity pa-
rameter Bo/M equal to 338 cm™!. We therefore conclude
that perturbation theory cannot be used to describe the
parameters B and By.

In summary, the calculated effective-mass parameter
X is greater than unity for the case of C-H in GaAs but
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FIG. 5. The variation of the fundamental (a) and overtone
(b) frequencies in cm™' with the change in the equilibrium
C-H length (&) for C-H in GaAs. Curve (c) shows the funda-
mental frequency x2 and its difference from (b) demonstrates
that the anharmonicity varies slowly with the C-H length.
The horizontal line shows the experimental frequency [2635.2
cm™! (Ref. 5)] .
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FIG. 6. The variation of the anharmonicity parameters
(amucm™?) with 1/v/M. Curves (a) and (b) are B and By
for the C-H length of 1.126 A and (c) and (d) are B and By
for the extended length of 1.161 A. The crosses denote values
of the mass for *2C-H, 3C-H, *C-D, and *C-D.

anharmonic effects are particularly large. This makes the
calculated transition frequencies depend critically on the
C-H length although the anharmonicity parameter and
isotope shifts are not as sensitive. An increase in length of
the C-H bond by as little as 0.035 A brings the calculated
fundamental frequency into agreement with the observed
frequency. The anharmonicity parameter B is about 160
amucm~! and close to the estimate of 176 amucm™!
given in Ref. 5. The anharmonicity is sensitive to high-
order derivatives in the potential energy and its effects
cannot be described by low-order perturbation theory.

VI. THE INTENSITY OF THE OVERTONE

Given the anharmonicity is so large, it is puzzling that
the overtone has not been reported. One possibility is
that the electrical anharmonicity has an important effect
in reducing its intensity to below the limit of detection.
We show in Fig. 7 the dipole moment p(z) of the cluster.
It is clear that this is a convex function whose curvature
leads to important effects in the intensity of the over-
tone. The ratio of the intensities in the overtone and
fundamental can be found from the relation

( Ya(e)p(2)To(2)da |
= (fq’l(w)l’(w)‘l’o(w)da:> ‘ (11)

The wave functions associated with the oscillator are
shown in Fig. 4. The numerator in Eq. (11) vanishes if
p(z) is either a constant or, if mechanical anharmonic-
ity is absent, is linear in x. This follows because the
wave functions are orthogonal and have the same parity.
When mechanical anharmonicity is included parity is no
longer a quantum number and the maximum in |¥, ()|
is larger for positive = than for negative z. This is a
consequence of the lower potential energy in the region
z > 0. Now, the product of wave functions in the numer-
ator in Eq. (11) is shown in Fig. 7 and is positive for z
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FIG. 7. Curve (a) shows the dipole moment of the cluster
(a.n.) versus the change in the equilibrium C-H length (A)
for GaAs. Curve (b) shows the product of oscillator wave
functions ¥o(z)¥2(x) shifted vertically upwards.

" between the nodes in ¥, and negative otherwise. As the

dipole p(z) increases rapidly for positive values of x, then
regions beyond the upper node become more important
and lead to a decrease in the integral. Hence we expect
electrical anharmonicity to decrease the intensity of the
overtone.

If we carry out the integral with the ab initio values
of p(z) we find the intensity ratio is 0.0033 for the C-
H length to be 1.126 A. If we neglect electrical anhar-
monicity and assume that p(z) is linear in z, we get an
intensity ratio of 0.016. Thus electrical anharmonicity
leads to a reduction in the intensity of 79%. If we use
the slightly longer C-H length which brings the calcu-
lated and observed fundamental transition frequencies
into agreement, then these ratios become 0.0028 and
0.010, respectively. This gives a 72% reduction. It is
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FIG. 8. The intensity of the overtone versus the degree of
electrical anharmonicity A. The C-H length is 1.126 A in
curve (a) and 1.161 A in curve (b).
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of interest to see the effect of gradually increasing the
magnitude of electrical anharmonicity. This can be done
by fitting the dipole moment p(z) to a polynomial in z
and multiplying the nonlinear terms by a factor of A.
Electrical anharmonicity is absent for A is 0.0 and fully
present when A is unity. We show in Fig. 8 the effect of
the varying electrical anharmonicity on I(A)/I(0). It is
clear that there is a value for electrical anharmonicity for
which the overtone cannot be detected at all.

VII. CONCLUSIONS

Our conclusions are following.

(1) x defined by Eq. (1) need not always be greater
than unity if the C atom is strongly bonded to another
species. This is the case for the C-H stretch mode in
HCN and this could also occur for defects in solids, e.g.,
H-O-X defects, etc. Indeed the value of x could be used
as a measure of the O-X strength.

(2) Local-density-functional cluster theory gives a good
account of the anharmonic vibrations of molecules and
defects in solids. The effects of anharmonicity are most
important for the accurate location of bond frequencies:
a slight error in bond length having a disproportionate
error in frequency. As a rule of thumb, it appears that
a 3% change in bond length causes a 10% change to fre-
quency. It is this sensitivity that led us initially to an
extremely good estimate of the C-H frequency in GaAs
and an overestimate in the present calculation.

(3) The anharmonicity parameter Bo deduced from the
overtone is 50% larger for C-H encapsulated in a solid
than for HCN. This is probably due to the confining ef-
fect of the Ga atom along the C-H axis. This is supported
by the fact that the anharmonicity parameter By for the
C-H stretch mode in GaAs is much greater than that for
the C-H bond on the (111) diamond surface [113 cm™!
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(Ref. 8)]. This suggests that evidence for bond-centered
configurations might be found from knowledge of the an-
harmonicity parameters, B and By.

(4) Low-order perturbation theory cannot be used to
give a quantitative account of anharmonicity.

(5) The intensity of the overtone is reduced by a factor
of 0.79 by electrical anharmonicity. The dipole moment
itself is a convex function which is almost independent
of the C-H length for compressed bonds but increases
rapidly with extended ones. The overtone intensity is
a very sensitive function of electrical anharmonicity and
can in principle be reduced to zero. Observations by Dar-
wich et al.® of overtones due to P-H bonds in InP where
Zn and Cd acceptors are passivated with H in a bond-
centered position show that the P-H overtone intensity is
close to half that expected from a simple Morse potential.
This is almost certainly because electrical anharmonicity
has been neglected.

The overtone of the C-H stretch mode in GaAs has not
been reported to date. This may reflect the reduction
in the intensity because of electrical anharmonicity, as
this effect can be very large. Alternatively, it may be a
consequence of a very short lifetime of the mode. It is
noteworthy that the energy of the overtone, 0.6 eV, is
larger than the adiabatic barrier for reorientation of H
around the four <111> axes. Thus the lifetime of the
anharmonic oscillator might be extremely short due to
coupling with this or with other modes.
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